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a b s t r a c t

Liquid chromatography-mass spectrometry (LC-MS) has been increasingly used in biomedicine to study
the dynamic metabolomic responses of biological systems under different physiological or pathological
conditions. To obtain an integrated snapshot of the system, metabolomic methods in biomedicine
typically analyze biofluids (e.g. plasma) that require clean-up before being injected into LC-MS systems.
However, high resolution LC-MS is costly in terms of resources required for sample and data analysis and
care must be taken to prevent chemical (e.g. ion suppression) or statistical artifacts. Because of that, the
effect of sample preparation on the metabolomic profile during metabolomic method development is
often overlooked. This work combines an Attenuated Total Reflectance-Fourier transform infrared (ATR-
FTIR) and a multivariate exploratory data analysis for a cost-effective qualitative evaluation of major
changes in sample composition during sample preparation. ATR-FTIR and LC-time of flight mass
spectrometry (TOFMS) data from the analysis of a set of plasma samples precipitated using acetonitrile,
methanol and acetone performed in parallel were used as a model example. Biochemical information
obtained from the analysis of the ATR-FTIR and LC-TOFMS data was thoroughly compared to evaluate the
strengths and shortcomings of FTIR biospectroscopy for assessing sample preparation in metabolomics
studies. Results obtained show the feasibility of ATR-FTIR for the evaluation of major trends in the
plasma composition changes among different sample pretreatments, providing information in terms
of e.g., amino acids, proteins, lipids and carbohydrates overall contents comparable to those found by
LC-TOFMS.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Metabolomics, dealing with the global profiling of a whole set
of small molecules or metabolites present in a biological system, is
gaining broader recognition and it is increasingly being used to
explore the dynamic responses of living systems under different
physiological and pathological conditions. Nonetheless, the com-
plexity of the metabolome is outstanding and, strictly speaking,
no single analytical technique is suitable for its quantitative or
qualitative profiling [1]. Thus, the subset of the metabolome
covered is defined by a sample preparation method and an
analytical technique is employed. Nuclear magnetic resonance

(NMR) is widely used in metabolomic profiling. It provides a
wealth of qualitative and quantitative information; limits of detec-
tion in the mM range, high reproducibility [2,3] and samples can be
typically measured with minimal sample preparation. Neverthe-
less, instrumentation, especially NMR spectrometers working at
high magnetic fields, is still expensive. Since the last few years, the
use of liquid chromatography with mass spectrometric detection
(LC-MS) is gaining interest in metabolomics [4]. High resolution
LC-MS (e.g., UPLC-QqTOF, UPLC-Orbitrap) provides high through-
put as well as outstanding levels of resolution, linearity, metabolite
coverage and sensitivity with limits of detection (LODs) in the
nM range.

Metabolomics in biomedicine relies on biofluids or tissue
extracts, plasma being one of the most commonly used (ca. 65%
of the LCMS metabolomic studies use this biofluid [5]) as it
provides an integrated view of systems biology [6]. Plasma is
obtained by collecting whole blood in anticoagulant-treated tubes

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/talanta

Talanta

http://dx.doi.org/10.1016/j.talanta.2014.04.009
0039-9140/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ34 93 788 23 00.
E-mail address: guillermo.r.quintas@uv.es (G. Quintás).
1 Both the authors have contributed equally in this work.

Talanta 127 (2014) 181–190



(e.g., with heparin, citrate or ethylenediaminetetraacetic acid
(EDTA)) to prevent the fibrinogen clotting cascade and then,
removing cells and platelets by centrifugation and makes up to
ca. 55% of the total blood volume. The use of plasma instead of
serum presents some advantages as the clotting process increases
the likelihood of degradation of labile metabolites and also
facilitates possible losses and transformations (e.g. oxidation) of
metabolites during clot formation and precipitation [5]. Besides,
serum provides lower volumes of sample per volume of whole
blood collected. However, with plasma protein contents in the
range of 6–8 g dL�1, protein removal is mandatory to prevent
degradation of the LC column and contamination of the electro-
spray (ESI) interface.

Sample preparation is critical in MS-based metabolomic experi-
ments. It affects the retrieved metabolomic profile, the data
quality and the reproducibility and so, it might determine whether
a study will be successful or not. Solvent precipitation is among
the most widely used methods for sample preparation for meta-
bolomic profiling of plasma due to its simplicity, high throughput
and reproducibility [5]. However, an often overlooked aspect is
that the selection of the parameters used for protein precipitation
(e.g., solvent, plasma to precipitant ratio, pH) determines the type
and amount of protein precipitated [7], the metabolite coverage
and the precision levels [5,8,9]. High resolution LC-MS systems
generate large multidimensional data sets that require time
consuming statistical analysis to extract information [1,8,10] for
exploratory or discriminant analysis. Difficulties in the LC-MS
analysis of the solvent dependent metabolite changes in plasma
or serum samples after protein precipitations are reflected by the
number of approaches that can be found in the literature, includ-
ing the comparison of the total number of detected features
[8,9,12,13]; the use of the total ion chromatogram (TIC) traces
comparing the number of signals observed and the general
sensitivity and reproducibility [13]; the evaluation of the column
lifetime prolongation [12]; the monitoring of the signal of iso-
topically labeled internal standards to monitor data quality and
reproducibility [12]; or the comparison of the number of late
eluting detected features [14] and the distribution of relative
standard deviation (RSD) values calculated across quality control
(QC) samples [14]. Moreover, metabolite identification must also
be performed as the use of unidentified fingerprints that reduces
the repeatability, reproducibility and interpretability of the com-
parison among sample pretreatments. Initial metabolite identifi-
cation based on accurate m/z values (i.e., without fragmentation
spectra) is carried out by matching the m/z within a user-defined
m/z error to a theoretically accurate m/z related to a single or
multiple molecular formulae [11]. In spite of recent advances in
the automation of this process [15], this step is still very time
consuming and often unfeasible. An additional difficulty of analyz-
ing LCMS data is that the parameters selected for MS and
chromatographic peak detection, de-convolution and alignment
must be carefully selected as they have a great effect on the
number of retrieved variables, which in turn affects the extracted
information.

Therefore, there is an interest in the development of analytical
tools for a straightforward evaluation of the main effects of sample
pretreatment on the biochemical sample composition.

FTIR spectroscopy is recognized as a valuable tool for the simul-
taneous analysis of a wide range of biomolecules including poly-
saccharides, proteins, lipids, fatty acids, amino acids, nucleic acids
and small inorganic ions [16]. Although clearly outperformed by
LC-MS in terms of sensitivity and specificity, FTIR spectroscopy in the
mid-IR region (4000–400 cm�1) still yields an easily accessible
fingerprint of complex biological samples [17,18] providing simulta-
neous multi-parameter information of the proteome, lipidome and
metabolome [19]. Potential fields of applications of FTIR spectroscopy

in biomedicine include cytology, histology and microbiology and it is
expected to be used as an objective and robust tool for cancer
diagnosis and screening [20,21,22].

FTIR spectra of liquid samples can be measured using transmis-
sion flow cells by adjusting the optical pathlength down to the low
mm range or by using attenuated total reflection (ATR) flow cells
to circumvent intense solvent absorption [23]. However, these
approaches limit both sensitivity and accessible spectral range.
Alternatively, a solvent elimination prior to the IR measurement of
biofluids simultaneously enhances sensitivity, avoids interfering
signals and reduces the sample volumes [19]. IR transmission
spectroscopy of dried serum films provided good accuracy levels
for the quantitative determination of albumin, total protein, urea,
total cholesterol, triglycerides and glucose [24]. IR measurements of
dry films of plasma samples have been used for the monitoring of 26
parameters providing a ‘metabolic photography’ of plasma that could
be used for the classification of individuals according to their
physiological condition [25]. A similar approach was used for the
determination of plasma protein contents by FTIR [26]. Direct ATR-
FTIR spectroscopy has been successfully applied for the quantifica-
tion of major compounds including glucose, lactate, triglycerides,
cholesterol, total protein, urea and albumin in serum and plasma
through PLS modeling [27,28]. Recently, lipidic parameters were
determined in serum by measuring the dry film formed in an ATR
crystal after the deposition of the sample organic extracts obtained
from a liquid–liquid extraction of serum samples [29].

In the aforementioned frame, this work combines ATR-FTIR
spectroscopy and multivariate exploratory data analysis for the
evaluation of the effect of different sample preparations in LC-MS
metabolomic studies. As a model example, plasma samples
precipitated using CH3CN, CH3OH and acetone were analyzed by
ATR-FTIR and LC-TOFMS analysis in parallel. Data obtained was
thoroughly compared to evaluate the strengths and shortcomings
of using FTIR spectroscopy during the initial steps of metabolomic
method development. Results obtained show the feasibility of
ATR-FTIR for a fast and cost-effective evaluation of major trends
in the plasma composition changes among different sample pre-
treatments, providing information in terms of e.g., amino acids,
proteins, lipids and carbohydrates overall contents comparable to
those found by LC-TOFMS.

2. Materials and methods

2.1. Chemicals and reagents

All solvents were of LC-MS grade and were purchased from
Scharlau (Barcelona, Spain). Ultra-pure water was generated with a
Milli-Q water purification system from Merck Millipore (Darmstadt,
Germany). Deuterated internal standards DL-phenylalanine-D5, L-
methionine-D3, DL-cystine-D4 and DL-cysteine-D2 with a purity of 98%
were purchased from Cambridge Isotopes Laboratory Inc. (Andover,
MA, USA). N-ethylmaleimide (Z98%), formic acid (Z95%) and other
additives and standards were obtained from Sigma-Aldrich Quimica
SA (Madrid, Spain). IsoFlos (Isoflurane, USP) for anesthetizing animals
during intervention was purchased from Laboratorios Dr. Esteve, S.A.
(Barcelona, Spain). Sodium heparin (5% v/v) from Laboratorios LEO
Pharma S.A. (Barcelona, Spain) was used for heparinizing syringes
prior to blood extraction.

2.2. Sample collection and processing

Plasma samples were obtained from three healthy female
mice (strain: C57BL6) that were maintained at constant condi-
tions (2371 1C, 60% humidity and light/dark cycles of 12/12 h),
receiving a standard laboratory diet and water ad libitum. Three
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mice were sacrificed at an age of 6 months employing isoflurane at
a concentration of 2.5% v/v and an oxygen flow of 0.5–1 L min�1

via inhalation as anesthesia during the whole intervention. Blood
was extracted with a heparinized syringe from the cava vein, and
centrifuged in Eppendorf tubes at 20,000 rpm during 15 min at
24 1C. Plasma samples were stored immediately in an ultra-low
temperature freezer at �80 1C. Animal experiments were carried
out at the University of Valencia (Spain) in compliance with the
legal requirements for animal experiments (European Guidelines
for use of Experimental Animals).

For processing, samples were kept on ice until their analysis to
prevent degradation. After thawing, plasmas from three mice were
mixed and homogenized on a vortex mixer during 10 s. Then,
150 mL of cold (4 1C) CH3OH, CH3CN or acetone was added to 50 mL
of plasma. For each solvent, three replicate extracts were prepared
keeping a constant sample concentration during protein precipita-
tion. It has to be underlined that in this study, one single pooled
plasma sample was used. This strategy is employed frequently
during the development of metabolomic procedures, as it enables
a straightforward comparison between sample pretreatments
or analytical conditions excluding other possible sources of
variance (e.g. biological variation among individuals). Samples
were centrifuged at a speed of 10,000 rpm at 4 1C during 10 min.
For LC-TOFMS measurements, 25 mL of supernatant was mixed
with 100 mL of an internal standard mixture containing 5 mM
Phenylalanine-D5, 10 mM Cysteine-D2-NEM and Methionine-D3

and 50 mM cystine-D4 in H2O (0.1% v/v HCOOH). The remaining
supernatant was employed for ATR-FTIR measurements without
further processing.

Blank extracts were prepared for each solvent by adding 150 mL
of cold (4 1C) CH3OH, CH3CN or acetone to 50 mL H2O. Blanks
underwent an identical treatment as plasma extracts prior to their
analysis. In addition, a second set of blanks (‘heparine blanks’) was
prepared by replacing blood by H2O in the sample collection
protocol.

2.3. ATR-FTIR sample analysis

Infrared spectra were obtained on a Bruker (Bremen, Germany)
IFS 66/v FTIR spectrometer equipped with a liquid nitrogen-
refrigerated mercury–cadmium–telluride detector, a vacuum sys-
tem, and a dry air purged sample compartment. Measurements
were made using an in-compartment ATR DuraSampleIR accessory
with a nine reflections diamond/ZnSe DuraDisk from Smiths
Detection Inc. (Warrington, UK). 1 mL of sample was deposited
in the center of the ATR crystal. Samples were dried at room
temperature for approximately 40 s. After that, the spectrum of
each sample was collected co-adding 300 scans in the range
between 4000 and 600 cm�1 with a resolution of 4 cm�1 and a
zero filling factor of 2. Three plasma aliquots were used for protein
precipitation using acetone, CH3CN or CH3OH. In order to evaluate
the reproducibility of the measurement, for each precipitation
solvent, three dried spots were prepared and for each dried
spot, three spectra were acquired. A spectrum of the ATR crystal
previously recorded using the same instrumental conditions was
used as background. After each measurement, the ATR surface was
thoroughly cleaned using H2O, CH3CN and the solvent used for
protein precipitation. Spectral acquisition order was randomized
to avoid biased results due to instrumental effects. ATR-FTIR
spectra were baseline corrected using a polynomial function. The
wavenumbers used as knots (i.e., points used for the estimation of
the polynomial baseline) are depicted in Fig. S-1. PCA of ATR-FTIR
data was performed on mean centered negative second order
derivative spectra using Savitzky–Golay differentiation (number of
points in filter: 5, order of the polynomial: 2; derivative: 2).

2.4. LC-TOFMS sample analysis

Chromatographic analysis of the plasma samples was performed
on a 1200 RRLC Series Agilent instrument (Palo Alto, CA, USA.).
Sample extracts and blanks were analyzed by triplicate using a
Zorbax SB C8 column (3 � 150 mm, 3.5 mm, Agilent). 100 mL aliquots
of sample were transferred into 200 mL capped glass vials. Prior to
the LC analysis, samples were diluted 1:5 with H2O (0.1% v/v HCOOH)
containing a mixture of deuterated internal standards. Autosampler
and column temperatures were set to 6 1C and 55 1C, respectively
and the injection volumewas 5 mL. A gradient elutionwith a total run
time of 15 min was performed at a flow rate of 350 mL min�1 as
follows: initial conditions of 96% of solvent A (H2O 0.05% v/v HCOOH)
were kept for 1 min, followed by a linear gradient from 4% to 96% of
mobile phase B (CH3CN 0.05% v/v HCOOH) for 4 min; isocratic
conditions of 96% B were held for 1.5 min and finally, a 0.5 min
gradient was used to return to the initial conditions, which were held
for 8 min. Mass spectrometry detection was performed using an
ABSciex 5600-TripleTOF MS spectrometer (Framingham, MA, USA).
The following electrospray ionization parameters were selected in
the positive mode (ESIþ): ion source gases 1 and 2 were set to 50 a.
u., curtain gas flow to 25 L h�1, temperature was set to 450 1C and
the ion spray voltage floating and de-clustering potential to 5500
and 100 V, respectively. Full scan data were collected in the TOF MS
mode from 70 to 950 mass to charge ratio (m/z) with a scan time of
0.08 s (cycle time: 0.27 s). Sample acquisition was randomized to
avoid bias effects of instrument drifts during the LC batch. H2O (0.1%
v/v HCOOH) solution was analyzed for every 8 plasma samples and/
or blank extracts for background correction and to monitor the lack
of cross-contamination. For quality control, an aqueous standard
mixture of endogenous metabolites at a concentration of 10 mM was
injected after each blank (data not shown) to monitor instrument
performance. A standard QC-sample, three plasma extracts and blank
solution were analyzed at the beginning of the batch for column
conditioning.

2.5. LC-TOFMS data processing

Continuous raw LC-TOFMS data (.wiff files) were converted in
centroid mode to mzML format using MSConverter (ProteoWizard
3.0, http://proteowizard.sourceforge.net/). Then, .mzML files were
imported into mzMine 2.10 (http://mzmine.sourceforge.net/).
Initially, a mass list was generated by peak detection using a
threshold of 200 a.u. in each MS spectrum within 1.5 and 12 min.
For chromatogram construction, a minimum span time of 0.05 min
and m/z tolerance of 2.5 mDa (or 5 ppm) were selected. Then,
the obtained chromatograms were smoothed using the Savitzky–
Golay filter (width: 9 data points). After that, chromatograms were
de-convoluted to separate them into individual peaks using the
baseline cut-off method included in mzMine 2.10, and the follow-
ing parameters: minimum peak height: 250; peak duration range:
0.05–0.5 min, and baseline level: 150. Finally, peak alignment was
performed to match features in the peak lists of the set of samples
using the Joint Aligner tool included in mzMine 2.10. This tool
aligns features through a match score based on m/z and retention
time of each peak using the following parameters: m/z tolerance:
2.5 mDa; weight for m/z: 1; retention time tolerance: 0.5 min;
weight for retention time: 1; same charge state among aligned
peaks required. The obtained peak table was imported into
MATLAB (Mathworks Inc., Natick, MA, USA) for data analysis
providing a raw data matrix X0 with samples in rows and variables
in columns. The molecular formula of selected metabolites was
estimated using PeakView (ABSciex) software, based on accurate
m/z values of the molecular ion and its isotopic profile. After
identification of the molecular formula, the Human Metabolome
Database (HMDB, http://www.hmdb.ca), MassBank (http://www.
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massbank.jp) and Lipid Maps (http://www.lipidmaps.org/) open
databases were employed for the putative metabolite identifica-
tion also using a mass tolerance of 75 mDa or 5 ppm.

2.6. Software

For the acquisition and handling of ATR-FTIR spectra, the OPUS
6.5 software from Bruker was employed. LC-TOFMS data acquisition
and instrument control employed software Analyst 4.1 (ABSciex).
LC-TOFMS data was processed using open source ProteoWizard 3.0,
mzMine 2.10, and in house written MATLAB 7.7.0 (Mathworks Inc.)
functions. Multivariate analysis was performed using PLS Toolbox
7.0 from Eigenvector Research Inc. (Wenatchee, WA, USA) and the
Statistics Toolbox (Mathworks). ATR-FTIR and LC-TOFMS raw data
as well as the peak table used in this work are available from the
authors.

3. Results and discussion

3.1. LC-TOFMS sample analysis

A total of 5293 features were detected in the 70–700 m/z
range after peak detection, chromatographic de-convolution and
peak alignment of the entire LC-ESI(þ)-TOFMS chromatographic
batch using the conditions described in the section LC-TOFMS data
processing. Nonetheless, this number was inflated by source con-
taminants and other sample components originating from e.g. tubes,
solvent impurities, etc. Thus, blank samples were used to identify a
total of 2456 non-relevant features that were removed from the
data set. Then, to further reduce the dimensionality of the data set,
unreliable variables detected in o50% of the plasma samples of each
class (i.e., CH3CN, CH3OH or acetone treated samples) were removed.
The analysis yielded a similar number of detected features in plasma
samples precipitated using CH3CN (245), CH3OH (242) and acetone
(308), retaining a total of 415 reliable features. The feature distribu-
tions shown in Fig. 1, indicated that the main differences were found
in the number and RSD values of late-eluting m/z ions (RT48 min).
However, multivariate analysis was required to analyze trends,
patterns and differences among samples.

The mean intensities of the internal standards cystine-D4

(RT: 1.84 min), methionine-D3 (RT: 2.34 min), cysteine-D2-NEM
(RT: 3.38 min) and phenylalanine-D5 (RT: 4.81 min) were calcu-
lated to measure the effect of ionic suppression during ESI. As
shown in Fig. S-2, the intensity of phenylalanine-D5 and methionine-
D3 was comparable among spiked blanks and plasma samples. On
the contrary, the cysteine-D2-NEM intensity was slightly higher
(8%) in CH3CN treated samples and blanks. The biggest difference
was observed for cystine-D4 whose intensity in plasma samples
was intensively suppressed (96.4–97.9%) as compared to that
found in blanks. Besides, cystine-D4 peak intensities indicated
higher ionic suppression at the beginning of the chromatogram for
CH3OH and acetone treated plasma samples.

3.2. ATR-FTIR sample analysis

Fig. 2 shows the average ATR-FTIR spectra of plasma samples
after protein precipitation using CH3CN, CH3OH or acetone.
Changes in intensity and shape of the ATR-FTIR bands indicated
that the solvent used for protein precipitation had a remarkable
effect on the sample composition. Plasma samples showed intense
absorption bands in the 3100–2800 cm�1 and 1800–900 cm�1

regions. These intervals cover a high number of IR active modes of
characteristic plasma metabolites including carbohydrates, pro-
teins, creatinine, urea, triglycerides, amino acids or cholesterol
[26]. Spectral bands in the 3100–2800 cm�1 range were assigned
to ν(CH), νas(CH3), νas(CH2), νs(CH3), and νs(CH2) stretching vibra-
tions characteristic of unsaturated fatty acids, cholesterol esters,
triglycerides, long chain fatty acids, phospholipids and glycerol
[25]. Likewise, bands in 1480–1430 cm�1 interval were assigned to
δas(CH3), δas(CH2), δs(CH3), and δs(CH2) bending (scissoring)
vibrations of fatty acids, phospholipids and triglycerides [25].
The region between 1740 and 1732 cm�1 included maxima
of absorption bands of stretching vibrations of carbonyl groups
of lipids, cholesterol esters and triglycerides [25]. Besides, 1720–
1600 cm�1, 1600–1480 cm�1 and 1400–1200 cm�1 regions were
assigned to amide I, II and III bands, respectively, mainly associated
with the protein backbone [30]. Protein characteristic bands were
indicative of residual contents after protein precipitation. Bands in
the regions between 1630 and 1560 cm�1 and between 1460 and
1360 cm�1 are assigned to CQO stretching and N–H bending
vibrations of proteins and amino acids, respectively. Finally the
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Fig. 1. Distribution of the detected features and precision levels, measured as %
RSD (see colorbar scale), for the set of plasma samples after protein precipitation
using CH3CN (top), CH3OH (middle) and acetone (bottom).

Fig. 2. Mean spectra of plasma samples after protein precipitation using acetone
(red), CH3CN (green) and CH3OH (blue). Horizontal lines indicate the spectral
regions associated with CH2 and CH3 (red), carbonyl (magenta), amides (blue) and
amino acids (green) groups as well as to P–O and C–O bonds (black). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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region between 1250 and 950 cm�1 was assigned to active
vibrations of C–O and P–O groups (e.g., saccharides and phospho-
lipids) [31]. Heparin is an IR absorbing sulfated glycosaminoglycan
that is present in tubes used for plasma collection and could be
detected in ‘heparin blanks’ (see Fig. S-3). However, since spectra
of plasma samples were dominated by the absorption of other
sample components, the spectral differences observed among
different types of plasma samples were not limited to the heparin
absorbing regions.

In summary, Fig. 2 shows that although IR spectroscopy cannot
provide an unambiguous identification of plasma metabolites due
to high spectral overlapping, it yields a snapshot of the underlying
global plasma composition.

3.2.1. Repeatability of ATR-FTIR analysis of plasma samples
Repeatability of ATR-FTIR measurements is a critical factor as it

reduces the within-class data variation facilitating the identifica-
tion of differences between protein precipitation methods. Auto-
mation of the ATR-FTIR sample handling improves manual error,
repeatability, reproducibility and sample throughput [19]. How-
ever, this study was designed for laboratories with basic FTIR
instrumentation and, because of that, it involved the manual
deposition of plasma samples onto the ATR surface. Precision of
ATR-FTIR measurements was affected by different sources of
variation including the manual pipetting precision, changes in
the positioning accuracy, shape and homogeneity of the dried
droplet, drying time and the instrumental noise. Therefore, the
intensity of IR spectra depends on the contact area and also on the
skill of the technician to consistently form films of evenly
distributed materials on a similar area upon drying the sample.
Spectra normalization to e.g., vector unit, a reference band or using
internal deuterated standards might reduce this unwanted data
variation thus improving the precision levels. However, in this
study spectra were not normalized to facilitate the evaluation
of the variation due to manual sample measurement. Fig. 3 shows
boxplots of areas of the ATR-FTIR spectra of dried spots of plasma
samples measured in two regions: 2827–2985 cm�1 and 1522–
1710 cm�1, corresponding to C–H and amide I and II absorption,

respectively. Intra-sample RSD% values were calculated from a set
of spectra measured from three spots acquired by triplicate after
protein precipitation. This value provided information on the
effect of manual pipetting, positioning accuracy, shape and homo-
geneity of the dried droplet, drying time and the instrumental
noise on the precision of the measurement. Inter-sample RSD%
values were calculated using a set of 27 spectra acquired for each
plasma sample. Acceptable intra- and inter-sample RSD% values in
2–16% (median¼6%) and 6–12% (median¼10%) range, respectively
were obtained. Precision levels were compared among three
solvents used for protein precipitation in both spectral regions
(see Table S-1). From the obtained area values in the CH and amide
I� II regions, ANOVA revealed significant differences among
area values when employing acetone, CH3OH and CH3CN, with
p-Values o0.001.

3.4. Principal component analysis (PCA) of LC-TOFMS and ATR-FTIR
data

PCA is among the most widely used methods for initial
exploratory data analysis. It provides an unbiased overview of
the data structure and is a common strategy for identifying
outliers, trends or clusters present in multivariate data sets. PCA
scores plot provides an overview of the latent patterns in the data
sets as the distances among samples can be related to their
similarity with respect to what pattern the model describes [32].
Fig. 4A shows the scores plot obtained from the PCA of the
LC-TOFMS data set, calculated using autoscaling as data pretreat-
ment and two PCs explaining 41.2% of the total variance. This plot
reflected a clear separation among the three type of samples,
supporting that the main source of variation was differenc in the
metabolomic profiles due to the solvent used for protein precipi-
tation. The analysis of the loadings shown in Fig. 4B revealed
that variables responsible for the separation of plasma samples
along PC1 and PC2 had characteristic distributions of m/z and RT
values. The score of the first PC was lower for CH3CN-precipitated
samples than for the samples precipitated with other solvents,
and the loadings plot indicated negative values on this PC for
polar compounds of low molecular weight (e.g. amino acids and

Fig. 3. Boxplots of ATR-FTIR area values in the CH and amide I and II regions measured in the dry spots of plasma samples after protein precipitation using acetone, CH3CN
and CH3OH. Note: integration of the CH region between 2827 and 2895 cm�1 was performed using a baseline fitted between the 2748–2812 cm�1 and the 3039–3132 cm�1

regions (integration mode F in OPUS 6.5). For the integration of the amide I and amide II regions between 1522 and 1710 cm�1, a two-point baseline at 1522 and 1710 cm�1

was used (integration mode B in OPUS 6.5).
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derivatives) evidencing a more effective extraction of those com-
pounds in CH3CN. Besides, the positive values of the scores for
acetone-treated samples are related in the loadings plot to positive
weights for lipophilic compounds of high molecular weight (e.g.
lipids, phospholipids) thus evidencing a higher content of lipids in
acetone extracts.

Finally, to evaluate the effect of ionic suppression in the PCA
scores plot, variables in the 0–2.0 min range were normalized
using cystine-D4 as internal standard and a second PCA model was
calculated. Results obtained were comparable to those obtained
before normalization (see Fig. S-4).

Differences in the FTIR spectra of plasmas between 850
and 1825 cm�1 and 2679 and 3200 cm�1 were evaluated by

PCA, including FTIR spectra of ‘heparin blanks’ and plasma samples
and using 2 PCs that described together 91.75% of the total
variance. As expected, pattern recognition from the scores plot
clearly differentiated plasma and blank samples. Besides, a major
clustering related to the solvent used for protein precipitation was
observed (see Fig. 5A). However, no clustering was observed
among blank samples, thus supporting that the main source
of variance among the spectra was the change in the sample
composition due to protein precipitation and not the presence of
heparin and/or solvent residues in the sample spectra.

Fig. 5B1 shows scores plot of a 2 PC model describing 90.06% of
the total variance of the plasma sample set. The within-class
clustering was indicative of the relative consistency among sample
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replicates. The identification of spectral regions responsible for the
difference among acetone, CH3OH and CH3CN-treated samples
was carried out by considering simultaneously both, scores and
loadings plots shown in Fig. 5B.2. The main conclusions obtained
from the LCMS analysis are in good agreement with the results
obtained from IR spectroscopy. PC1, explaining 63.21% of the data
variance, discriminates plasma samples precipitated using acetone
from CH3CN and CH3OH (see Fig. 5B.1). Thus, higher values of the
scores of PC1 were associated with the use of acetone for protein
precipitation. The loadings plot in Fig. 5B shows that the regions
with a higher contribution to PC1 were centered on 2925, 2855,
1735 and 1460 cm�1. Both, 2925 and 2855 cm�1 bands are located
in the spectral interval that covers ν(CH), νas(CH3), νas(CH2),
νs(CH3), and νs(CH2) stretching vibrations associated with methy-
lene groups from long aliphatic chains and therefore indicate an
effective extraction of lipids. In addition, absorption at 1735 cm�1

was attributed to ν(CQ0) stretching vibrations also present in
lipid spectra.

The higher scores values of CH3OH-treated samples on the
second principal component allowed their differentiation from
CH3CN-treated samples. Examination of the loadings plot suggests
that discrimination was based on the absorption bands centered at
2955, 2920, 2852, 1655, 1448, 1315 and 1085 cm�1. Absorption in
3200–2800 cm�1 range is mainly due to ν(CH), νas(CH3), νas(CH2),
νs(CH3), and νs(CH2) stretching vibrations indicating a high
relative concentration of lipids in CH3OH treated samples.
Proteins contribute to the Amide I band (CQO stretch) centered
at 1650 cm�1. Absorption bands in 1660–1300 cm�1 region were
not assigned to specific functional groups due to strong spectral
overlapping including δ(NH2) bending and ν(COO�) stretching of
amino acids and amide II and III bands of proteins. The maximum
found at 1448 cm�1, however, was assigned to δas(CH3), δas(CH2),
δs(CH3), and δs(CH2) bending (scissoring) vibrations of lipids.
Absorption centered around 1085 cm�1 was assigned to ν(C–O)
and ν(P–O) stretching vibrations of e.g., carbohydrates and phos-
pholipids. The above mentioned bands do not correspond to
heparin absorption bands, again supporting that spectral differ-
ences were not due to different extraction of this sulfated glyco-
saminoglycan. The residual Q and the Hotelling's T2 statistics were
used for outlier detection [33]. For the two previously described
PCA models, calculated Q and Hotelling's T2 statistics confirmed
that the majority of samples fall within 95% confidence levels
(see Fig. S-5).

3.5. Comparison of LC-TOFMS and ATR-FTIR patterns

In order to avoid flawed conclusions, trends in the biochemical
composition observed by FTIR should agree with those observed
by LC-TOFMS. In this work, the similarity between the ATR-FTIR
and LC-TOFMS data was assessed by two multivariate analysis
methods, namely the Mantel test [34] and procrustes analysis [35].
The Mantel test evaluates the significance of the correlation
between two pairwise distance matrices. In this study, the stan-
dardized Euclidean multivariate distances between matched
sample pairs analyzed by ATR-FTIR and LC-TOFMS were used.
The significance of the multivariate correlation was determined by
a Monte Carlo simulation in which a null distribution was obtained
by randomly shuffling ATR-FTIR spectra and, for each permutation
a correlation coefficient was calculated. Results after 10,000
random permutations formed an empirical null distribution that
was used to estimate the p-Value as the proportion of permuted
absolute correlation values that were equal to or greater than the
actual value [36]. Results depicted in Fig. 6 shows a statistically
significant correlation between ATR-FTIR and LC-TOFMS data. This
finding was consistent with previous studies that showed the
capability of FTIR to fingerprint complex biological samples. To

further confirm this, we performed a procrustes analysis on the
principal components that described the LC-TOFMS and ATR-FTIR
data. Procrustes analysis is a method for analyzing the relatedness
between two data sets X and Y (here, the LC-TOFMS and ATR-FTIR
data sets, respectively). It determines a linear transformation
by translation, reflection, orthogonal rotation, and scaling of the
points of the Y matrix so it resembles the points in matrix X. The
employed goodness-of-fit criterion (d) was the sum of squared
errors between the two transformed matrices. The smaller the d
value, the more similar the two transformed matrices are (i.e. a
perfect match would provide d¼0) [37], and its significance
was assessed empirically by using a Monte Carlo approach. As in
the previous analysis, ATR-FTIR samples were randomly permuted
and for each permutation the sum of squared errors between
the transformed matrices after procrustes transformation was
calculated. The match of the data sets and the associated residuals
provide more information than the Mantel test. Results shown
in Fig. 7 revealed again a strong similarity (empirical p-Value
r0.0001) among MS and FTIR data sets with a clear clustering
of the samples according to the solvent used for protein precipi-
tation.

Overall, these results supported the hypothesis that major
changes in the LC-TOFMS metabolic profiles can be anticipated
by ATR-FTIR spectroscopy. Therefore, it could be anticipated that
information extracted from FTIR could be useful to compare and
optimize clean-up procedures in order to select the conditions
providing, e.g. the highest protein, phospholipids or lipids removal
from the sample matrix or to evaluate sample collection, handling
and storage protocols. We therefore sought to gain further insight
into the observed FTIR clustering among protein precipitation
methods by comparing results from LC-TOFMS. Fig. 8 shows
mean LC-TOF MS intensities of a set of metabolites classified as:
amino acids and derivatives, fatty acid esters, monosaccharides,
glycerophospholipids, imidazopyrimidines and indoles (see also
Table S-2). Intensities of most of the identified amino acids, mono-
saccharides, imidazopyrimidines and indoles decreased in CH3O-
H4acetone4CH3CN series and mean intensities of glyceropho-
spholipids and fatty acids were, as expected, higher in plasma
samples precipitated using acetone. This is in accordance with the
conclusions withdrawn from the PCA of ATR-FTIR spectra. Further-
more, the use of CH3CN lead to a general decrease of band
intensities in ATR-FTIR spectra and the number of features were
detected in MS, which were also reflected in lower ion suppression
during cystine-D4 elution.
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Fig. 6. Results of Mantel test on raw LC-TOFMS and ATR-FTIR data using the
standardized Euclidean distance and 10,000 Monte Carlo permutations.
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To be worthwhile, the evaluation of sample pretreatments by
FTIR biospectroscopy should not only provide useful information,
but it should also reduce the time required for data analysis,
facilitate the interpretation of the results and it also has to be
cost effective. Data analysis of large multidimensional LC-TOFMS

metabolomic data sets is very time consuming. Raw data must
be thoroughly processed and the efficiency, accuracy and peak
detection performance of the processing depends on a set of user-
selected parameters and algorithms including, e.g. MS and LC-peak
detection, smoothing, de-convolution, integration and alignment
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[10]. For example, previous results showed that only a partial
overlap was obtained when comparing the metabolomic peak
tables obtained using centWave [38], a matched filter implemented
in XCMS [39] and mzMine [40]. Moreover, the optimum analytical
conditions for LC-TOFMS metabolic profiling depend on the
sample composition which in turn is affected by the sample pre-
treatment due to, e.g. ion suppression, adduct formation, ESI
contamination or poor column performance that might bias the
results. Results obtained using ATR-FTIR showed that no complex
data pretreatment was needed and so, major trends in the plasma
compositions following protein precipitation could be identified
faster than by LC-TOFMS. In this study, protein precipitation,
sample measurement and the comparison of the main differences
among protein precipitation methods using ATR-FTIR could be
carried out in less than 3 h at virtually no cost.

4. Conclusions

The use of LC-TOFMS data for the comparison among sample
pretreatments is expensive, very time consuming and requires
extensive data pre-processing and analysis. In this work we have
shown the feasibility of ATR-FTIR biospectroscopy for the evalua-
tion of major trends in the plasma composition after sample
pretreatment, providing information in terms of e.g., amino acids,
proteins, lipids and carbohydrates overall contents comparable to
those found by LC-TOFMS. The partial trade-off for time saved
during data acquisition and analysis is reduced specificity and
sensitivity. The biochemical information extracted from ATR-FTIR
data could be useful for the comparison and optimization of
sample preparation in metabolomics studies and it might be used
to tailor the clean-up steps to the objective of the study.
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